Contribution from the Savannah River Laboratory, E. I. du Pont de Nemours & Co., Aiken, South Carolina 29801

Covalency of Neptunium(IV) Tris(cyclopentadienyl) Compounds from Mössbauer Spectra

D. G. KARRAKER* and J. A. STONE

Received March 27, 1979

Isomer shifts measured from the ²³⁷Np Mössbauer spectra of NpCp₃OR (R = alkyl), NpCp₃R, and NpCpAr (Ar = aryl) are used as a measure of the covalency in Np(IV) ligand bonding. The isomer shifts in NpCp₃*n*-Bu and NpCp₃C₆H₄C₂H₅ show a strong σ character for the Np–*n*-Bu and Np-C₆H₄C₂H₅ bonds. The σ character of Np–OR bonding is definite but less pronounced. The comparatively low covalency in the bonding of NpCp₄ is ascribed to longer Np–C bonds in NpCp₄ than in NpCp₃⁺ compounds. The ²³⁷Np isomer shift in Np(MeCp)Cl₃-2THF indicates that the MeCp ligand is σ -bonded in this compound.

Introduction

The U(IV) compounds with cyclopentadiene (HCp) UCp₃Cl and UCp₄ were among the first actinide organometallic compounds discovered.^{1,2} The analogous Np(IV) compounds NpCp₃Cl and NpCp₄ were synthesized later and shown to have identical properties.^{3,4} A number of derivatives have been prepared from UCp₃Cl, such as UCp₃OR (R = alkyl), UCp₃R, and UCp₃Ar (Ar = aryl).⁵⁻¹⁰ Substituted cyclopentadienes such as MeCp, indenyl (In), and C₅H₄CH₂C₆H₅ have also been prepared for structural studies of the UCp₃⁺ compounds.^{11,12}

This study is concerned with the preparation of the Np(IV) analogues of the UCp₃⁺ compounds and their study by Mössbauer spectroscopy. For several NpCp₃⁺ compounds, intermediate relaxation effects obscured the Mössbauer spectra, so Cp₃NpOR and Cp₃NpAr compounds substituted on either the Cp, R, or Ar ligands were prepared and studied. Previous investigations have shown that the isomer shift of the Mössbauer spectrum reflects covalent contributions to the bonding of Np⁴⁺ ion.^{13,14} These covalent effects are the major interest of this study.

Experimental Section

General Procedure. All compounds were prepared in the dry, purified argon atmosphere of a glovebox. Samples were sealed under an argon atmosphere in plastic holders for Mössbauer measurements, as performed previously.^{13,14} Solvents (THF, DME, toluene, petroleum ether, and ethyl ether) were purified by standard methods in an argon atmosphere. Neptunium was analytically determined by destruction of a sample in dilute acid and α -counting an aliquot of this solution. Chloride was determined by titration with standard silver nitrate to potentiometric end point. Organic ligands were estimated by gas chromatography of the decomposition products, formed by reacting the compounds with water or ethanol.

Preparation of Compounds. NpCp₃Cl, Np(MeCp)₃Cl, and NpCp₃Br-DME. NpCp₃Cl was prepared by reacting NpCl₄ and TlCp in 1,2-dimethoxyethane (DME), as described by Marks et al.¹⁵ Substitution of TlMeCp or NpBr₄ produced Np(MeCp)₃Cl or NpCp₃Br-DME, respectively. The product of this reaction may be only 70-80% pure. To obtain pure material (>95%) the crude product was dissolved in toluene and the solution filtered and vacuum evaporated. The solid product was heated at 100 °C under vacuum for 8-16 h to remove excess solvent. In the single preparation of NpCp₃Br.DME: Np, 40.05; Br, 13.6. Found: Np, 40.6; Br, 14.5.

NpIn₃Cl and NpIn₃·xTHF. NpIn₃Cl was prepared by reacting NpCl₄ and KIn in tetrahydrofuran (THF) solution, as described by Laubereau et al.¹¹ The product of the reaction at room temperature contained only trace amounts of chloride, and its Mössbauer spectrum showed only a Np(III) species, consistent with NpIn₃·xTHF product. Mixing the reagents at -78 °C yielded a mixture with a Cl/Np ratio of 0.15, assumed to be a mixture of NpIn₃Cl·xTHF and NpIn₃·xTHF from its Mössbauer spectrum.

 $NpCp_3BH_4$, $Np(MeCp)_3BH_4$, $NpCp_3OR$, and $Np(MeCp)_3OR$. These compounds were prepared by metathesis of $NpCp_3Cl$ (for example) with $LiBH_4^5$ or a potassium alkoxide.¹⁶ Stoichiometric amounts were stirred in toluene for 24–72 h, the solids (LiCl, KCl) were filtered,

[a]	ble	۶I

	% Np			% Np	
compd	calcd	found	compđ	calcd	found
NpCp ₃ BH ₄	53.04	48.9	Np(MeCp) ₃ O- <i>i</i> -C ₃ H ₇	44.2	42.3
Np(MeCp) ₃ BH ₄	48.4	46.9	NpCp,OCH(CF,),	39.6	40.2
NpCp ₃ O- <i>i</i> -C ₃ H ₇	48.3	45.0	NpCp ₃ O-t-C ₄ H ₂	46.9	44.4

and the filtrate was vacuum evaporated to recover the products. Compounds prepared in this manner and their analyses are tabulated in Table I.

The generally low neptunium results are considered the result of incomplete solvent removal. Solvents were removed in a fore-pump vacuum, without heating. Experience has shown that heating these compounds often leads to their decomposition.

NpCp₃-*n***-Bu.** NpCp₃-*n*-Bu was prepared by adding an equimolar quantity of commercial butyllithium in hexane to NpCp₃Cl suspended in diethyl ether at -78 °C.⁸ The solution was stirred as it warmed to room temperature, and then the ether was removed by vacuum. The remaining solids were dissolved in toluene, the solution was filtered, and the product was recovered by vacuum evaporation of the toluene. Anal. Calcd for NpCp₃-*n*-Bu: Np, 48.5. Found: Np, 47.9. Cl was not detected.

Butane produced by decomposition of a sample with ethanol was measured by gas chromatography as 84% of theory. Mössbauer spectra of several preparations always showed NpCp₄ and NpCp₃·3THF impurities.

NpCp₃Ph, NpCp₃C₆H₄C₂H₅, and Np(MeCp)₃(C₆H₄C₂H₅). These compounds were prepared only in an impure state by reacting NpCp₃Cl with an ether solution of the phenyllithium¹⁷ at -78 °C, similar to the method for preparing NpCp₃-*n*-C₄H₉. After the mixture was stirred a short time at room temperature, the ether was removed under vacuum and the residue extracted with toluene. The toluene solution was evaporated under vacuum to recover the product. For NpCp₃Ph the best preparation had a Cl/Np ratio of 0.52, indicating 52% of the sample was unreacted NpCp₃Cl. Destruction of a sample with ethanol and benzene analysis by gas chromatography showed 40% NpCp₃Ph; the Mössbauer spectrum showed a NpCp₄ impurity. The NpCp₃(C₆H₄C₂H₅) and Np(MeCp)₃(C₆H₄C₂H₅) compounds were further purified by extraction with petroleum ether (bp 20-40 °C). Np(MeCp)₄ was obtained, in an impure state, from an unsuccessful attempt to prepare Np(MeCp)₃Ph.

attempt to prepare Np(MeCp)₃Ph. Np(MeCp)Cl₃·2THF. This compound was prepared by the reaction of stoichiometric quantities of TlMeCp and NpCl₄ in THF solution, similar to the literature preparation of UCpCl₃·2THF.^{18,19} The reaction mixture was stirred for 24 h at room temperature and filtered, and a crude product was obtained by evaporation of the filtrate. The crude product was washed with toluene to remove a probable Np(MeCp)₃·2 impurity and vacuum-dried. Anal. Calcd for Np(MeCp)Cl₃·2THF: Np, 41.95; Cl, 18.50. Found: Np, 42.4; Cl, 19.55. Cl/Np = 3.05.

Results

Mössbauer spectra were obtained for all 16 compounds prepared. Representative spectra for the compounds studied are shown in the five figures: Figure 1, Np(MeCp)₃BH₄; Figure 2, Np(MeCp)₃Cl, NpCp₃Br·DME, NpIn₃Cl·xTHF; Figure 3, NpCp₃-*n*-Bu; Figure 4, Np(MeCp)₃O-*i*-C₃H₇; Figure 5, Np(MeCp)Cl₃-2THF.

Figure 1. Mössbauer spectrum of (MeCp)₃NpBH₄.

Figure 2. Mössbauer spectra of (a) $(MeCp)_3NpCl$, (b) In_3NpCl (the sharp peak at 3.5 cm/s is In_3Np), and (c) Cp_3NpBr .

Figure 3. Mössbauer spectra of (a) Cp_3Np -*n*-Bu, (b) Cp_4Np , and (c) Cp_3Np .

Except for that of NpMeCpCl₃, none of the spectra are well resolved. The spectra of all the Cp_3Np^+ compounds investigated had their resolution decreased to varying degrees by

Figure 4. Mössbauer spectrum of (MeCp)₃NpOCH(CH₃)₂.

Figure 5. Mössbauer spectrum of Np(MeCp)Cl₃·2THF.

relaxation broadening. In extreme cases, the resolution was so poor that no useful information could be obtained. Examples are the spectra of Np(MeCp)₃Cl, NpIn₃Cl·xTHF, and NpCp₃Br·DME (Figure 2) and NpCp₃BH₄ and NpCp₃Ph (not shown). The spectra of NpCp₃O-*i*-C₃H₇, NpCp₃O-*t*-Bu, and NpCp₃C₆H₅C₂H₅ were poorly resolved but could be interpreted within a rather generous error.

Poor resolution occurs when the relaxation time of the absorbing ²³⁷Np nuclei is about the same as the 62-ns half-life of the 59.5-keV excited level. At relaxation times much faster than 62 ns, the spectrum is either a single line or a quadrupole-split pattern, like NpCp₄.¹⁴ At much slower relaxation times, the spectrum is magnetically split, like $Np(C_8H_8)_2$.¹³ Intermediate relaxation effects in Np(IV) compounds usually show some correlation with the distance between Np(IV) ions. Relaxation effects on Mössbauer spectra can sometimes be relieved by measuring a similar compound with bulkier ligands, such as $[(C_2H_5)_4N]_2NpCl_6$, which has a well-resolved spectrum, instead of Cs₂NpCl₆, which has an uninterpretable spectrum because of intermediate relaxation effects. This approach was used in this study with partial success. For example, NpCp₃BH₄ and NpCp₃Ph have spectra that could not be interpreted, so measurements were made with Np- $(MeCp)_3BH_4$ and $NpCp_3C_6H_5C_2H_5$. Interpretation of the spectra requires the assumption that the isomer shifts be essentially the same for both the substituted and unsubstituted ligands. The Mössbauer spectra of $NpCp_4$ and $Np(MeCp)_4$ have the same isomer shifts within experimental error, in accord with this assumption.

The Mössbauer parameters for the compounds studied are listed in Table II, with some previously reported data included for comparison. Isomer shifts are referred to $NpAl_2 = 0$.

Neptunium(IV) Tris(cyclopentadienyl) Compounds

Table II. Mossbauer Parameters for NpCp3+ Compounds

compd	isomer shift, cm/s ^a	$eqQ/4, cm/s^c$	$g_{\circ}\mu_{n}H_{eff},$ cm/s ^d
NpCp ₃ Cl ^b	1.4 ± 1.0		· · · · · · · · · · · · · · · · · · ·
Np(MeCp) ₄	0.71 ± 0.07	1.29 ± 0.08	
Np(MeCp) ₃ BH ₄	1.45 ± 0.4		1
NpCp,-n-Bu	0.27 ± 0.07		5.8 ± 0.2
NpCp ₃ C ₆ H ₄ C ₂ H ₅	0.42 ± 0.28		5.5 ± 0.4
$Np(MeCp)_{3}O-i-C_{3}H_{7}$	0.93 ± 0.07	5.0 ± 1.0	5.72 ± 0.20
NpCp,O-i-C,H,	0.86 ± 0.2		5.4 ± 0.5
NpCp ₃ OCH(CF ₃),	0.79 ± 0.2		5.7 ± 0.4
NpCp ₃ O-t-Bu	0.86 ± 0.3		5.2 ± 0.4
NpIn, xTHF	3.55 ± 0.15	1.37 ± 0.07	
Np(MeCp)Cl ₃ ·2THF	-0.31 ± 0.07		5.15 ± 0.06

^a Isomer shift relative to $\delta = 0$ for NpAl₂. ^b From ref 14. ^c Quadrupole coupling constant. ^d Magnetic hyperfine constant.

Discussion

The isomer shift in the ²³⁷Np Mössbauer spectra depends upon the shielding of the 6s orbitals by electron density in the inner orbitals, principally the 5f orbitals.^{20,21} As the 5f orbitals add electrons proceeding from Np⁷⁺ to Np³⁺, the isomer shift becomes progressively more positive, from approximately -6.5 cm/s to 3.5 cm/s. Similarly, as electron density is contributed to the 5f orbitals from the ligands bonded to Np(IV), the isomer shift of the Np⁴⁺ ion is shifted from its normal position of -0.4 cm/s toward the normal value for Np³⁺, 3.5 cm/s. The isomer shift of the Np⁴⁺ ion in Np(IV) organometallic compounds reflects the differences in the electron density contributed by the ligands, which are equivalent to differences in covalent contributions of the ligands bonding to the Np(IV)ion.

For Np(MeCp)₃BH₄ and NpCp₃Cl, the isomer shifts are 1.4 cm/s. The difference between 1.4 and -0.4 cm/s is considered to represent the covalent contribution of the three Cp ligands. BH_4^- and Cl⁻ ions are assumed to have little or no covalency in their bonding to Np(IV). The four $NpCp_3OR$ compounds all have isomer shifts in the range 0.8-0.93 cm/s; compared with the 1.4-cm/s shift of NpCp₃Cl, this demonstrates that the σ -bonding OR group is withdrawing some of the electron density contributed by the three Cp ligands from the Np(IV) ion. The isomer shifts of NpCp₃-n-Bu and $NpCp_3C_6H_4C_2H_5$, 0.27 and 0.4 cm/s, respectively, show a much stronger electron-withdrawing tendency and verify the strong σ bonding reported for the *n*-Bu and C₆H₄C₂H₅ ligands.^{9,10} The isomer shift of NpCp₃-n-Bu represents a withdrawal of electron density of more than 1 cm/s with respect to $NpCp_3^+$, equivalent to about 1/4 the isomer shift difference between Np(IV) and Np(III). In view of the nature of the Np^{IV} -n-Bu bond, it is not surprising that no Np(IV)or U(IV) tetraalkyl compounds are known.

The isomer shift of $NpCp_4$ (0.72 cm/s) is less than that of NpCp₃Cl (1.4 cm/s) and even NpCp₃OR compounds (0.8-0.95 cm/s). The explanation for this lies almost certainly in the difference between the Cp-Np bond distances in $NpCp_3^+$ compounds and the distances in $NpCp_4$. In the U(IV) analogues, single-crystal studies have shown that the C-U distance is 2.72-2.74 Å for UCp₃Cl, UCp₃-n-Bu, and UCp₃-alkyl while the C-U^{IV} distance is 2.81 Å for UCp₄.²² The increased $C-U^{IV}$ bond distance in UCp_4 is the result of repulsion between the four Cp ligands. On the assumption that the distances between Cp ligands and Np(IV) are very close to the Cp–U distances, the smaller isomer shift in NpCp₄ probably results from a decreased overlap between Cp bonding orbitals and the 5f orbitals of the Np(IV) ion, and thus to a decreased covalent contribution in the bonding of NpCp₄, compared to $NpCp_3^+$. $Np(C_8H_8)_2$, which has the most positive

isomer shift of any Np(IV) organometallic compound (1.94 cm/s), has a Np-C distance of 2.65 Å. The shorter Np-C distance in $Np(C_8H_8)_2$ compared to $NpCp_4$ is a significant factor in the greater covalency of $Np(C_8H_8)_2$. The Np(IV)ion has 20 electrons available from the ligands in both NpCp₄ and $Np(C_8H_8)_2$, so the electron density available to the Np(IV)ion is the same for both $Np(C_8H_8)_2$ and $NpCp_4$.

The Mössbauer spectrum (Figure 5) of Np(MeCp)Cl₃. 2THF has an isomer shift of -0.31 cm/s, about the same as the isomer shift of $NpCl_4$ (-0.35 cm/s). Comparing these isomer shift values, one observes that the MeCp ligand and the chloride ion are essentially equivalent in donation of the electron density to the Np⁴⁺ ion. This equivalence indicates that the MeCp ligand is σ bonded in NpMeCpCl₃·2THF and implies that the Cp ligand in analogous compounds (UCpCl₃·2THF, UCpCl₃·DME, etc.) is probably σ bonded also. The infrared data of Bagnall et al.¹⁹ show an average ν (U-Cp) of 262 cm⁻¹ for seven compounds of the general formula UCpX₃·xS (X = Cl⁻ or Br⁻, x = 1 or 2, S = ligand) compared with an average ν (U-Cp) of 243 cm⁻¹ for UCp₃Cl and UCp₃Br. The difference suggests a difference between the U-Cp bond in UCpX and the U-Cp bond in UCp₃X compounds, consistent with the Mössbauer results.

Acknowledgment. The authors are indebted to B. Tiffany for the gas chromatography analyses. The information contained in this article was developed during the course of work under Contract No. AT(07-2)-1 with the U.S. Department of Energy.

Registry No. NpCp₃BH₄, 70480-21-6; Np(MeCp)₃BH₄, 70479-75-3; NpCp₃O-*i*-C₃H₇, 70480-19-2; Np(MeCp)₃O-*i*-C₃H₇, 70479-76-4; NpCp₃OCH(CF₃)₂, 70479-77-5; NpCp₃O-t-C₄H₉, 70479-78-6; NpCp₃-n-Bu, 70479-79-7; NpCp₃Ph, 70479-80-0; NpCp₃C₆H₄C₂H₅, 70470-76-7; Np(MeCp)₃(C₆H₄C₂H₅), 70470-77-8; Np(MeCp)Cl₃, 70470-86-9; NpCp₃Br, 70414-75-4; NpIn₃, 70480-18-1; NpIn₃Cl, 70479-81-1; NpCp₃Cl, "1317-00-6; NpCp₄, 37216-56-1; Np(MeCp)₄, 70479-82-2; NpCl₄, 15597-84-9; NpBr₄, 15608-32-9; NpCp₃, 63757-59-5.

References and Notes

- L. T. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem., 2, 246 (1956).
 E. O. Fischer and Y. Hristidu, Z. Naturforsch. B, 17, 275 (1962).
- (3) E. O. Fischer, P. Laubereau, F. Baumgärtner, and B. Kanellakopulos, . Organomet. Chem., 5, 583 (1966).
- (4) F. Baumgärtner, E. O. Fischer, B. Kanellokopulos, and P. Laubereau, Angew. Chem., Int. Ed. Engl., 7, 634 (1968).
- (5) R. von Ammon, B. Kanellokopolus, and R. D. Fischer, Radiochim. Acta, 11, 162 (1969)
- (6) G. Brandi, M. Brunelli, G. Lugli, and A. Mazzei, Inorg. Chim. Acta, 7, 319 (1973).
- A. E. Gebala and M. Tsuitui, J. Am. Chem. Soc., 95, 91 (1973).
- (8) T. J. Marks, A. M. Seyam, and J. R. Kolb, J. Am. Chem. Soc., 95, 5539 (1973).
- (9) M. Tsutsui, N. Ely, and R. Dubois, Acc. Chem. Res., 9, 219 (1976). (10)T. J. Marks, Acc. Chem. Res., 9, 223 (1976).
- (11) P. Laubereau, L. Ganguly, J. H. Burns, B. M. Benjamin, J. L. Atwood,
- and J. Selbin, *Inorg. Chem.*, **10**, 2274 (1971). (12) L. Leong, K. O. Hodgson, and K. N. Raymond, *Inorg. Chem.*, **12**, 1329 (1973)
- (13) D. G. Karraker, J. A. Stone, E. R. Jones, Jr., and N. Edelstein, J. Am. Chem. Soc., 92, 4841 (1970).
- (14) D. G. Karraker and J. A. Stone, *Inorg. Chem.*, 11, 1742 (1972).
 (15) T. J. Marks, A. M. Seyam, and W. A. Wachter, *Inorg. Synth.*, 6, 147 (1976).
- (16) R. von Ammon, B. Kanellakopulos, R. D. Fisher, and P. Laubereau, Inorg. Nucl. Chem. Lett., 5, 219 (1969).
 M. Schlosser and V. Ladenberger, J. Organomet. Chem., 8, 193 (1967).
- (18) L. Doretti, P. Zanella, G. Faraglin, and S. Faleschini, J. Organomet. Chem., 43, 33 (1972).
- (19) K. W. Bagnall, J. Edwards, and A. C. Tempest, J. Chem. Soc., Dalton Trans., 295 (1978).
- (20) W. L. Pillinger and J. A. Stone, "Mössbauer Effect Methodology", Vol. 4, I. J. Gruverman, Ed., Plenum Press, New York, 1968, pp 217-36.
- (21) G. M. Kalvius, Plutonium 1970, Proc. Int. Conf., 4th, 296-330 (1970).
 (22) E. C. Baker, G. W. Halstead, and K. N. Raymond, Struct. Bonding
- (Berlin), 25, 23 (1976).